f07 — Linear Equations (LAPACK) f07vhe

1

NAG C Library Function Document
nag_dtbrfs (f07vhc)

Purpose

nag_dtbrfs (f07vhc) returns error bounds for the solution of a real triangular band system of linear
equations with multiple right-hand sides, AX = B or A" X = B.

2

Specification

void nag_dtbrfs (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,

3

Nag_DiagType diag, Integer n, Integer kd, Integer nrhs, const double ab[],
Integer pdab, const double b[], Integer pdb, const double x[], Integer pdx,
double ferr[], double berr[], NagError *fail)

Description

nag_dtbrfs (f07vhc) returns the backward errors and estimated bounds on the forward errors for the
solution of a real triangular band system of linear equations with multiple right-hand sides AX = B or
ATX = B. The function handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of nag_dtbrfs (f07vhc) in terms of a single right-hand side b
and solution z.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+6A) = b+ 6b
|6a;j| < Bla;;| and |6b;| < B[by].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |x; — Z;|/ max |z;|
1 1

where z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

uplo — Nag_UploType Input

On entry: indicates whether A is upper or lower triangular as follows:

[NP3645/7] f07vhe.

f07vhe NAG C Library Manual

if uplo = Nag_Upper, A is upper triangular;
if uplo = Nag_Lower, A is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: trans — Nag TransType Input
On entry: indicates the form of the equations as follows:

if trans = Nag NoTrans, the equations are of the form AX = B,

if trans = Nag_Trans or Nag_ConjTrans, the equations are of the form A7 X = B.

Constraint: trans = Nag _NoTrans, Nag_Trans or Nag_ConjTrans.

4: diag — Nag DiagType Input
On entry: indicates whether A is a non-unit or unit triangular matrix as follows:
if diag = Nag_NonUnitDiag, A is a non-unit triangular matrix;

if diag = Nag_UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint: diag = Nag_NonUnitDiag or Nag_UnitDiag.

5: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

6: kd — Integer Input

On entry: k, the number of super-diagonals of the matrix A if uplo = Nag_Upper or the number of
sub-diagonals if uplo = Nag_Lower.

Constraint: kd > 0.

7: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

8: ab[dim] — const double Input
Note: the dimension, dim, of the array ab must be at least max(1, pdab x n).

On entry: the n by n triangular matrix A. This is stored as a notional two-dimensional array with
row elements or column elements stored contiguously. The storage of elements a;; depends on the

order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ab[k 44— j+ (j— 1) x pdab], for i = 1,...,n and
j=1t,...,min(n,i+ k),

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ab[i — j+ (j — 1) x pdab], for i = 1,...,n and
j=max(1,i —k),...,i;

if order = Nag_RowMajor and uplo = Nag_Upper,
a;; is stored in ab[j — i+ (i — 1) x pdab], for i =1,...,n and
j=r1,...,min(n,i+ k),

if order = Nag RowMajor and uplo = Nag Lower,
a;; is stored in ab[k+ j — i+ (i — 1) x pdab], for i = 1,...,n and
j=max(1l,i —k),...,1.

f07vhe.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07vhe

10:

11:

12:

13:

15:

16:

pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab > kd + 1.

b[dim] — const double Input

Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(i — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:
if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).
x[dim] — const double Input

Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) X pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 5 — 1].

On entry: the n by r solution matrix X, as returned by nag_dtbtrs (f07vec).

pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order = Nag_ColMajor, pdx > max(1,n);

if order = Nag_RowMajor, pdx > max(1, nrhs).
ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).
On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...,r
berr[dim] — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).
On exit: berr[j — 1] contains the component-wise backward error bound g for the jth solution
vector, that is, the jth column of X, for j =1,2,...,7
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

[NP3645/7] f07vhe.3

f07vhe NAG C Library Manual

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, kd = (value).
Constraint: kd > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pdab = (value), kd = (value).
Constraint: pdab > kd + 1.

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

A call to nag dtbrfs (f07vhc), for each right-hand side, involves solving a number of systems of linear

equations of the form Az = b or A"z = b; the number is usually 4 or 5 and never more than 11. Each
solution involves approximately 2nk floating-point operations (assuming n > k).

The complex analogue of this function is nag_ztbrfs (f07vvc).

f07vhe.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

f07vhe

To solve the system of equations AX = B and to compute forward and backward error bounds, where

0.00
0.00
0.00

9 Example
—4.16 0.00
A= —2.25 4.78
0.00 5.86
0.00 0.00

9.1 Program Text

0.00
0.00
6.32
—4.82

and B=

0.16

/* nag_dtbrfs (f07vhc) Example Program.

*

* Copyright 2001 Numerical Algorithms Group.

*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{
/* Scalars *x/

Integer i, j, k, kd, n, nrhs, pdab, pdb, pdx;
Integer ferr_len, berr_len;

Integer exit_status=0;
Nag_UploType uplo_enum;
NagError fail;
Nag_OrderType order;

/* Arrays */
char uplo[2];

double *ab=0, *b=0, *berr=0,

#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I,J) abl(
#define AB_LOWER(I,J) abl[(

J-1) *xpdab
J-1) *pdab

+
+

#define B(I,J) b[(J-1)#%pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define AB_UPPER(I,J) abl(
#define AB_LOWER(I,J) abl[(

I-1)+*pdab +
I-1)*pdab +

#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + JT - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

k
I

J
k

*ferr=0, *x=0;

Vprintf ("f07vhc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("s*x["\n] ");
Vscanf ("%$1d%1d%1d%s*["\n]
pdab = kd + 1;

#ifdef NAG_COLUMN_MAJOR

pdb = n;

pdx = n;
#else

pdb = nrhs;

pdx = nrhs;
#endif

ferr_len = nrhs;
berr_len = nrhs;

[NP3645/7]

’

&n,

&kd,

&nrhs) ;

—16.64
—13.78

13.10
—14.14

—4.16
—16.59
—4.94
-9.96

JO07vhe.5

f07vhe NAG C Library Manual

/* Allocate memory */
if (!(berr = NAG_ALLOC(berr_len, double)) ||
ferr = NAG_ALLOC(ferr_len, double)) ||
ab = NAG_ALLOC((kd+1) * n, double)) ||
b = NAG_ALLOC(n * nrhs, double)) ||

)

1(
1(
1(
! (x = NAG_ALLOC(n * nrhs, double))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file, and copy B to X */
Vscanf (" ' %1s ’'%*["\n] ", uplo);
if (*(unsigned char #*)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (#*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
¥
k = kd + 1;
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = i; j <= MIN(i+kd,n); ++3)
Vscanf ("%1f", &AB_UPPER(i,j));
¥
Vscanf ("sx["\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = MAX(1l,i-kd); j <= i; ++3j)
Vscanf ("%$1f", &AB_LOWER(i,j));
}
Vscanf ("sx[*\n] ");

}

for (i = 1; i <= n; ++1i)

{

for (j = 1; j <= nrhs; ++3)
Vscanf ("$1f", &B(i,3));

}
Vscanf ("$*[*\n] ");
/* Copy B to X x/
for (i = 1; i <= n; ++1i)

{
nrhs; ++3j)

for (3 = 1; j <=
= B(i,3);

X(i,3)
}
/* Compute solution in the array X */
fO7vec(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
kd, nrhs, ab, pdab, x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7vec.\n%s\n", fail.message);
exit_status = 1;
goto END;

3
/* Improve solution, and compute backward errors and #*/
/* estimated bounds on the forward errors */
fO07vhc(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
kd, nrhs, ab, pdab, b, pdb, x, pdx, ferr, berr, &fail);
if (fail.code != NE_NOERROR)

f07vhe.6 [NP3645/7]

f07 — Linear Equations (LAPACK)

{

}

Vprintf ("Error from fO7vhc.\n%s\n", fail.message);

exit_status = 1;
goto END;

/* Print details of solution */

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,
x, pdx, "Solution(s)", 0, &fail);
(fail.code != NE_NOERROR)

if

fo

fo

{

}

Y

I

Vprintf ("Error from x04cac.\n%s\n", fail.message);

exit_status = 1;
goto END;

(3 1;

Vprintf ("\nBackward errors (machine-dependent)\n");

j <= nrhs; ++73)

Vprintf ("$11l.1le%s", berr[j-1]1, Jj%7==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds

"(machine-dependent)\n") ;

(3 = 1;

j <= nrhs; ++3)

Vprintf ("%1ll.le%s", ferr([j-1], j%7==0 2"\n":" ");

Vprintf ("\n") ;
END:

if
if
if
if
if

(
(
(
(

(

berr) NAG_FREE (berr);
ferr) NAG_FREE(ferr);
ab) NAG_FREE (ab) ;

b) NAG_FREE (b) ;

x) NAG_FREE (x) ;
return exit_status;

9.2 Program Data

fO07vhc Example Program Data

4

'L
-4.
-2.

-16.
-13.

13.
-14.

1
16
25

64
78
10
14

2

4.78
5.86

-4.16
-16.59
-4.94
-9.96

:Values of N, KD and NRHS
:Value of UPLO

6.32
-4.82 0.16 :End of matrix A

:End of matrix B

9.3 Program Results

fO07vhc Example Program Results

Solution(s)

S w N R

1 2
4.0000 1.0000
-1.0000 -3.0000
3.0000 2.0000
2.0000 -2.0000

Backward errors (machine-dependent)

4.

Te-17

0.0e+00

Estimated forward error bounds (machine-dependent)

5.

4e-14

5.7e-14

f07vhe

[NP3645/7]

f07vhe.7 (last)

	f07vhc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	trans
	diag
	n
	kd
	nrhs
	ab
	pdab
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

